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ABSTRACT: Surface acoustic wave (SAW) waveguide-

coupled (WGC) resonators are of considerable interest

for narrow-band filter applications though until recently

there has been little published on the acoustic details of

their operation. As in any resonator, one must filly

understand its mode structure and herein we study the

SAW mode profiles in these devices. Transverse and
longitudinal mode profiles in the resonant cavity of the

device were measured at various frequencies of interest

using a knife-edge laser probe. In addition we predict

the mode profiles for the device structure by two inde-

pendent methods. One is a stack-matrix approach adapt-

ed from integrated optics and the other is a conventional

analytical eigenrnode anatysis of the Helmholtz equation.

Both modelling techniques are in good agreement with

the measured results.

L INTRODUCTION

Surfkce acoustic wave (SAW) waveguidewou-
pled (WGC) resonators, as shown in Figure 1, are a

class of devices which are proving to be quite useful in

narrow band filtering applications.
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F@ure 1 Schematic layout for a

waveguide-coupled resonator

Though these devices were proposed quite some

time ago’ there has since been only a few papers pub-

lished on these devices. Tanaka, et al. ~ have published
the most comprehensive analysis of the WGC resonator

to date, using an analytical modal analysis to predict the

resonant frequencies of the device and the frequencies of

the spurious modes. Their work provides a relatively

w~rehamive introduction to the device, giving the
reader an intuitive feel for the relationship between the

transducer overlap width, W, coupling gap, G, and the

mode stntcture. However, they have not published an

accurate means of predicting the frequencies of the reso-

nant and spurious modes.

Gopani end Horim$ more recently have present-

ed the frequency characteristics of various WGC resona-

tors they have fabricated. Their results indicate they
have been able to reduce the level of the spurious modes

considerably but they provide no insights into their meth-

ods for achieving this. There were several papers on

WGC resonator filters presented at the 1992 IEEE

Ultrasonics Symposium clearly indicating a considerable

industrial and university effort is underway.

In the process of designing a WGC resonator

for a specific application one is typically concerned about

the center frequency and bandwidth of the device as well

as the spurious modes of the devica These devices are

quite complicated and a detailed understanding must
employ both the coupling of modes (COM) analysis4’s

end the treatment of the device as a SAW structure

supporting a colledion of guided modes. Both of these

analyses are key but in this paper we will focus princi-

pally on the SAW waveguide and cavity aspects of the
WGC resonator.

For this investigation a number of WGC resona-

tor devices were designed and fabricated each with dif-

ferent values for W, G, and C. Numerous measure-

ments were made to determine the relationship between
device geometry end the device transfer function but

herein we will only discuss the amplitude profiles of the

SAW transverse and longitudinal modes which were

measured using a knife-edge laser probe. 6 In general,

our approach was to measure the transverse mode pro-

files at the resonant frequencies associated with peaks in
the magnitude response of the transfer fimction of the

WGC resonator.

In this paper we predict the transverse beam

profiles by two distinctly different techniques. These

methods yield the eigenmwJes of the device structure and
they compare favorably b shape with the mode profiles

measured using the laser probe and this corroboration

between theory and experiment represents a considerable

increase in the collective understanding of WGC resona-
tors.

11. DEVICE DESCRIPTION

Our design for the WGC resonator is shown
schematically in Figure 1. The device can be thought of
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as two one port SAW r~nators coupled acoustically by
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the overlap of their respective eigenmodes.

In Figure 2 we present the transfer function for
a WGC resonator. The passband response as well as the

spurious reqxmse are set by the modes within the de-

vice. Peaks in the frequency response occur near fre-

quencies which support both longitudinal and transverse

modes. As will be shown , the lower edge of the psss-

band, X,, in Figure 2 is a symmetric mode and the upper
edge of the passbsnd, /,1, is an antisymmetric mode.

The nearby spurious mode, fti, is a higher order

antisymmetric mode. The synthesis task which presents

itself to the designer is to control the strength and loca-

tion of these modes through design. The present work is
a step towards this goal in as much as it provides some

of the tools neceaasry to effectively perform this synthe-

sis.
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Figure 2 Transfer function of a WGC

resonator

HI. METHODS FOR EIGENMODE CALCULA-

TIONS

The transverse mode profiles were predicted

using two independent methods. The analytical method is

the traditional approach of solving the Hehnholtz

equation in the slow and fast regiona and matching the

solutions at the boundaries. The stack matrix method

has been adapted from integrated optics and is extremely

versatile. With the stack matrix one can analyze a

waveguide or mutlichwel waveguide with an arbitrmy

number of velocity sections. The results from these
techniques are compared with experimental results in the

next section.

For the stack matrix approach we will use the

Helmholtz equation for the scalar potential, @i , in sectio
i, the solution of which is

where /3 is the longitudinal propagation constant, u is

the angular frequency, and ~ is the SAW velocity in the

i-th section and kj = (~-~~w . WIe have ~de the

t

conventional assumption that the zdependence ise ‘j~z

and the time dependence is #. The boundary condi-

tions at the interface between the i-th and the (i+ 1)-th

are that the displacement and the stress are continuous.

Stack matrix theory begins by deftig the

continuous components used in the boun&ry condition to

be the field variabka, U and W, as follows

U, = c$j(x) = Ap-’i’ + B@’
(1)

WJ = C#[@) = jkiCi(-Ap ‘% ‘ + BP ‘)

where Ci is the effective stiffness constant for the i-th

region.

After some algebraic manipulations, one can

obtain a simple relationship between two adjacent field

variables as follows

[1{uj-~
1

caskiwi

~1 !!

-—sink,wi f.Ji
% =Mt ‘i (2)

“-l c&$dnkiwi
Wi w,

c(wklw~

where Wi is he width of the i-th .se&ion and Mi is the

characteristic matrix of the section. The repeated appli-
cation of the boundary conditions at each interface is
accomplished by the concatenation of each Mr There-

fore, the charaaeristic matrix of the stack, M, which in-

cludes the entire stmcture is given by

Rl=M,M20MNrlEl(3)
For the guidedNwave %lutions, ap should be

evanescent at both ends, i.e. for both i = Q and i = N

sections. This guided condition is satisfied by a pure

imaginary value of k, at both sidea and

O. This will lead to the matrix equation

[

1

1[ 1

-~u +C~+1Y~+1m12 Ao

Coyo ‘~1 ‘c~+ly.+l% %+1

B. = AN+, =

[10 (4)

‘o

where y. = j(~2 --- *W, yN+l . j(~2 - -$_)W

N+l

In otier te obtain a non-trivial solution, the

determinant of the matrix must be set to zero thus yield-

ing the dispersion sdation for the waveguide. For the

general multichannel waveguide structures, a numerical

method is necesary to solve the matrix euuation.

IV. MEASURE?&NTS AND RESULTS
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In this section we will present experimental

measurements of a WGC resonator on STX-Quartz and

compare these results with theoretical predictions based
on the methods referenced in Section III. Though numer-

ous devices were fabricated and tested we will present

only the results from one of these which had strong

spurious modes. While this device would not be good

for a system application, it was an ideal device for our
mode profile measurements. The results we present,

however, were consistently demonstrated for various

devices.

The device was mounted on the computer-con-

trolled translation stage of our knife-edge laser probe and

leveled. The details of operation of this apparatus has
been described previouslfl and will not be repeated here.

It is sufficient to say that the laser probe allows us to

measure the magnitude and phase of a Rayleigh wave at
various locations throughout the device. For these ex-

periments the laser spot at the surface of the device was
approximately 4~m in diameter and the signal to noise
ratio of the measurements was around 60 dB. The suc-

cessful operation of the laser probe requires that the

location of the scan on the surface of the device have a

reasonable reflectance and so the measurements were
made with the laser apot on the aluminum electrodes of

the IDT and on the bus bar rather than on unmetallized

Quartz. From the device transfer function shown in Fig-

ure 2 we select the frequencies at which we wish to

make transverse laser probe scans. For example, if we

wish to measure the mode profile for the first symmetric

mode we set the SAW drive for the device at the first

symme%ric mode frequency, f,, , and scan transverse to

the direction of SAW propagation. Similarly we can

select the frequencies associated with any of the spurious

modes which appear in the transfer function and measure

the associated mode profiles. Longitudinal scans were

made parallel to the direction of SAW propagation with

the spot on the outside bus bar as close as possible to the

electrode overlap region.

For the mode profile data we present, the origin

of the coordinate system was set such that x = O (the
transverse dimension) was on the central bus bar which

comects the ground electrodes for both tracks and y =0
(the longitudinal dimension) was at the midpoint between
the reflectors. The transverse scans were all taken at the

center of the cavity. The symmetric modes were ob-

tained when the two tracks were driven by the same
source. The antisymmetric modes were obtained with a
balun drive, i.e., the two tracks were driven 180° out of

phase. In Figure 3 we show the measured and predicted

normalized magnitudes of the first symmetric mode. The
msgnitude is expressed in arbitrary unita (A. U.). Both

theoretical approaches predict the same shape with the

profile reaching peaks in the middle of the tracks and

reaching a local minimum on the grounded bus bar
between. The phase data also compared very well with

the theoretical predictions but will not be presented here

due to a lack of space,

First Symmetric Mode
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igure 3 Transverse beam profile for the

first symmetric mode

In Figure 4 we present the magnitude for the mode

profile of the first antisymmetric mode. Again there is
good comparison between theory and experiment. The

profile is, of course, quite similar to that for the first

symmetric mode with the exeeption that the profile goes

to zero at the central bus bar for the antisymmetric

mode.

In Figure 5 we present the normalized magni-
tude for the firat antisymmetric mode. Again there is

good agreement betwem experiment and the two theoret-

ical predictions though the agreement is not as precise as

for the first symmetric and antisymmmetric modes. This

is in part due to the lower signal strength associated with
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figure 4 Transverse beam profile for the

first antisymmetric mode
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the second antisymmetric mode and the fact that what we

measure is a superposition of the second antisymmetric

and first antisymmetric modes.

Second Antisymmetric Mode

12 ‘=’’”5 B

!,1

1,0

- O*

on .
~ ~,

: 06

.Z a5

>r 0.4

05

0.2

08

-649 -403 -2 U30?M -@l

1,.”svuse rl#nlen,wJ” (#m)

Igure 5 Transverse beam profile for the

=nd antisymmetric mode

In Figure 6 we present the longitudinal scan for

the second symmetric mode. This shape was very simi-

lar to what was measured at fil, , ~1, and ~Q, which

supports Tanakaz conjecture that these transverse modes

are supported by a fimdamental longitudinal mode.

Longitudinal Scon
De.+. BNR 5

In

O,*

-0.8

; 07

“ aa>

& 05
:

n.

0>

02

-Cc91 -4m -woo o ?C=m 40m 6000
Lc.”ql”d!nd mme”s,n” (/..n)

Figure 6 Longitudinal mode profile for

second symmetric mode

V. SUMMARY AND CONCLUSIONS

In this paper we have presented both experimen-
tal and theoretical work on the mode profiles in WGC
resonators. The two independent methods for predicting
the mode profiles are reasonably accurate though the
stack matrix theory method is the most versatile of the

two. This paper represents, to the best of our knowl-
edge, the first use of stack matrix theory to predict mode

profiles in SAW structures. The versatility and accuracy

of this technique makes it useful for the calculation of

mode profiles in complicated, multichssmel SAW and

ACT devices.
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